固体物理又和化学沾边,带着点物理化学的了不得属性。
物化好讨厌的,学物理的怕它,学化学的也怕。
其实沈奇也有点怵物化,这玩意又物又化,又不物又不化,杀人不偿命,就是要你送命。
这道题,nacl晶体中离子间相互作用能量总和ep已给出。
当r偏离r0时,ep偏离ep0,设偏离量为u。
那么用x表示相对偏移量,要得出u与x的幂级数关系,须做一个泰勒展开,即利用ep在r0处的泰勒展开。
真是折磨人,做个物理题还得会泰勒展开,好在泰勒展开非常简单沈奇开始在试卷上答题。
u的幂级数表达式为:
u一a0a1xa2x2a3x3
由绝热压缩可知:
1/k一一v(dp/dv)r一r0
d2ep/dv2一d/dv一
最终得:一94;a一177;a一253x10一109j94
也不知道对不对啊,只能这样了,时间仓促,后面还有五题。沈奇赶紧进入后面题目的答题。
第四题,乍一看稀疏平常,沈奇仔细一思考,卧槽,相当恐怖啊。
“一定量的乙醚封装在玻璃管内,一部分呈液态,另一部分呈气态。”
“管内无其他杂质,若管内体积恰好为这些乙醚的临界体积,那么缓慢加热到临界温度时,因气c液两相不再有差别而使液面消失”
虽然前三题耗费了不少时间,但在第四题上,沈奇非常谨慎的再次细审一遍题干。
审题到了这里,沈奇生出一种不祥的预感,脊椎骨嗖嗖冒寒气。
又是液体,又是气体,又是临界
这说明了什么?
这预示着什么?
范德瓦耳斯气体!
毫无疑问,涉及到范氏气体的题目,那肯定是纯粹的物化题了。
怕什么来什么。
是它?
是它!
它不该来。
可它已经来了。
它毕竟还是来了。
沉默,片刻的沉默。
沈奇必须在最短时间内。
解决一个问题。
玻璃管中。
气相和液相的占比。
究竟是多少?
乙醚,无色透明。
却是物化江湖中的夺命之液。
夺命,液体。
杀人无形。
有范德瓦耳斯的地方,就有江湖。
但最危险的不是液体。
而是。
气液共存。
bg和b1。
终于,沈奇动笔了:
取1一l乙醚,随着温度变化,总体积为vk,气相和液相的摩尔分数分别为a(t)cβ(t)。
avgβv1一vk
当温度为t时,饱和蒸气压为p0,由等面积法,得:
∫上vg下v1pdv一p0(vg一v1)
代入积分得:
rtlnvg一b/v1一b一a一p0(vg一v1)
由范氏方程:
Ψ范氏ΦΨ方程脑补
求得:
液相b1一441
气相bg一559
最终,沈奇给出了他的答案,即液相b1和气相bg的占比。
完成了前四题,时间耗费掉2小时。
还剩后四题,沈奇只有1个小时的答题时间。
不是他不努力,这份物竞国决考卷真的很难。
『加入书签,方便阅读』